Binaries from Milky Way’s globular clusters could be detected by Lisa - TechSource International - Leaders in Technology News

Binaries from Milky Way’s globular clusters could be detected by Lisa

NextGen gravitational wave detector in space will complement LIGO on Earth.
Author:
Publish date:
Social count:
69
The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe.

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe.

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe according to reports.

Now the European Space Agency has said it’s next-generation Laser Interferometer Space Antenna (LISA) gravitational wave detector, that is expected to be in space in 2034, will be able to potentially detect dozens of binary files in the globular clusters of the Milky Way.

Globular clusters are dense environments containing millions of tightly packed stars and are efficient factories for gravitational wave sources. But a new study from Northwestern University indicates that LISA, will be able to detect binary sources – pairs of orbiting compact objects.

These binary sources will contain all combinations of black hole, neutron star and white dwarf components. LISA will also be sensitive to gravitational waves of a lower frequency than those detected by the Earth-bound Laser Interferometer Gravitational-Wave Observatory (LIGO)

“LISA is sensitive to Milky Way systems and will expand the breadth of the gravitational wave spectrum, allowing us to explore different types of objects that aren’t observable with LIGO,” said lead author Kyle Kremer, a doctoral student at the Northwestern University in Illinois, US. While 150 globular clusters have been observed so far in the Milky Way, one out of every three clusters will produce a LISA source.

Approximately eight black hole binaries will be detectable by LISA in our neighbouring galaxy of Andromeda and another 80 in nearby Virgo, the study showed. The research team used more than a hundred fully evolved globular cluster models with properties similar to those of the observed globular clusters in the Milky Way.

The models were run on Quest, Northwestern’s supercomputer cluster. This powerful resource can evolve the full 12 billion years of a globular cluster’s life in a matter of days. The study, published on May 11 by the journal Physical Review Letters, is the first to use realistic globular cluster models to make detailed predictions of LISA sources.

Story Source: Northwestern University